CE

ClawExplorer

OpenClaw skill

budget-variance-analyzer

An OpenClaw skill that analyzes budget variances for construction projects by comparing planned budgets against actual expenditures across defined cost categories. It identifies overruns and underruns, categorizing them by areas such as labor, materials, equipment, and subcontractors. The skill generates concise variance reports highlighting key discrepancies and recommendations.

Files

Review the files below to add this skill to your agents.

Security notice: review the SKILL.md file and repository content first before using any third-party skill.

SKILL.md content

---
slug: "budget-variance-analyzer"
display_name: "Budget Variance Analyzer"
description: "Analyze budget vs actual cost variances. Identify overruns, forecast final costs, and generate variance reports."
---

# Budget Variance Analyzer

## Business Case

### Problem Statement
Cost overruns surprise project teams:
- Late detection of budget issues
- No systematic variance analysis
- Difficult to forecast final costs
- Unclear root causes

### Solution
Systematic budget variance analysis that tracks costs against budget, identifies trends, and forecasts final project costs.

### Business Value
- **Early warning** - Detect overruns early
- **Forecasting** - Predict final costs
- **Accountability** - Track variance causes
- **Decision support** - Informed cost decisions

## Technical Implementation

```python
import pandas as pd
from datetime import datetime, date
from typing import Dict, Any, List, Optional, Tuple
from dataclasses import dataclass, field
from enum import Enum


class VarianceStatus(Enum):
    """Variance status."""
    UNDER_BUDGET = "under_budget"
    ON_BUDGET = "on_budget"
    OVER_BUDGET = "over_budget"
    CRITICAL = "critical"


class CostCategory(Enum):
    """Cost categories."""
    LABOR = "labor"
    MATERIAL = "material"
    EQUIPMENT = "equipment"
    SUBCONTRACTOR = "subcontractor"
    OVERHEAD = "overhead"
    CONTINGENCY = "contingency"
    OTHER = "other"


class VarianceCause(Enum):
    """Common variance causes."""
    SCOPE_CHANGE = "scope_change"
    QUANTITY_CHANGE = "quantity_change"
    PRICE_ESCALATION = "price_escalation"
    PRODUCTIVITY = "productivity"
    REWORK = "rework"
    DELAY = "delay"
    UNFORESEEN = "unforeseen"
    ESTIMATE_ERROR = "estimate_error"
    OTHER = "other"


@dataclass
class BudgetItem:
    """Single budget line item."""
    item_code: str
    description: str
    category: CostCategory
    original_budget: float
    current_budget: float  # After approved changes
    committed_cost: float  # Contracts, POs
    actual_cost: float     # Paid/invoiced
    forecast_cost: float   # Estimate at completion
    percent_complete: float
    notes: str = ""

    @property
    def variance_amount(self) -> float:
        """Budget variance (negative = over budget)."""
        return self.current_budget - self.forecast_cost

    @property
    def variance_percent(self) -> float:
        """Variance as percentage."""
        if self.current_budget == 0:
            return 0
        return (self.variance_amount / self.current_budget) * 100

    @property
    def status(self) -> VarianceStatus:
        """Determine variance status."""
        pct = self.variance_percent
        if pct > 5:
            return VarianceStatus.UNDER_BUDGET
        elif pct >= -5:
            return VarianceStatus.ON_BUDGET
        elif pct >= -15:
            return VarianceStatus.OVER_BUDGET
        else:
            return VarianceStatus.CRITICAL


@dataclass
class VarianceRecord:
    """Record of budget variance."""
    record_id: str
    item_code: str
    variance_amount: float
    cause: VarianceCause
    explanation: str
    recorded_date: date
    recorded_by: str
    approved: bool = False
    approval_date: Optional[date] = None


@dataclass
class ForecastScenario:
    """Cost forecast scenario."""
    name: str
    description: str
    adjustments: Dict[str, float]  # item_code: adjustment amount
    total_forecast: float
    variance_from_budget: float


class BudgetVarianceAnalyzer:
    """Analyze budget vs actual cost variances."""

    VARIANCE_THRESHOLD_WARNING = -0.05  # -5%
    VARIANCE_THRESHOLD_CRITICAL = -0.15  # -15%

    def __init__(self, project_name: str, original_budget: float, currency: str = "USD"):
        self.project_name = project_name
        self.original_budget = original_budget
        self.currency = currency
        self.items: Dict[str, BudgetItem] = {}
        self.variance_records: List[VarianceRecord] = []
        self.history: List[Dict[str, Any]] = []

    def add_budget_item(self,
                       item_code: str,
                       description: str,
                       category: CostCategory,
                       budget: float,
                       committed: float = 0,
                       actual: float = 0,
                       percent_complete: float = 0) -> BudgetItem:
        """Add budget line item."""
        forecast = max(committed, actual / percent_complete * 100) if percent_complete > 0 else budget

        item = BudgetItem(
            item_code=item_code,
            description=description,
            category=category,
            original_budget=budget,
            current_budget=budget,
            committed_cost=committed,
            actual_cost=actual,
            forecast_cost=forecast,
            percent_complete=percent_complete
        )

        self.items[item_code] = item
        return item

    def update_costs(self, item_code: str,
                    committed: float = None,
                    actual: float = None,
                    percent_complete: float = None,
                    forecast: float = None):
        """Update item costs."""
        if item_code not in self.items:
            raise ValueError(f"Item {item_code} not found")

        item = self.items[item_code]

        if committed is not None:
            item.committed_cost = committed
        if actual is not None:
            item.actual_cost = actual
        if percent_complete is not None:
            item.percent_complete = percent_complete
        if forecast is not None:
            item.forecast_cost = forecast
        else:
            # Auto-calculate forecast
            if item.percent_complete > 0:
                item.forecast_cost = item.actual_cost / item.percent_complete * 100
            else:
                item.forecast_cost = max(item.committed_cost, item.current_budget)

        self._record_history()

    def adjust_budget(self, item_code: str, amount: float, reason: str):
        """Adjust current budget (approved change)."""
        if item_code not in self.items:
            raise ValueError(f"Item {item_code} not found")

        self.items[item_code].current_budget += amount
        self.items[item_code].notes += f"\nBudget adjusted by {amount}: {reason}"

    def record_variance(self,
                       item_code: str,
                       cause: VarianceCause,
                       explanation: str,
                       recorded_by: str) -> VarianceRecord:
        """Record variance explanation."""
        item = self.items.get(item_code)
        if not item:
            raise ValueError(f"Item {item_code} not found")

        record_id = f"VAR-{len(self.variance_records) + 1:04d}"

        record = VarianceRecord(
            record_id=record_id,
            item_code=item_code,
            variance_amount=item.variance_amount,
            cause=cause,
            explanation=explanation,
            recorded_date=date.today(),
            recorded_by=recorded_by
        )

        self.variance_records.append(record)
        return record

    def _record_history(self):
        """Record current state to history."""
        snapshot = {
            'date': date.today().isoformat(),
            'total_budget': sum(i.current_budget for i in self.items.values()),
            'total_committed': sum(i.committed_cost for i in self.items.values()),
            'total_actual': sum(i.actual_cost for i in self.items.values()),
            'total_forecast': sum(i.forecast_cost for i in self.items.values())
        }
        self.history.append(snapshot)

    def calculate_summary(self) -> Dict[str, Any]:
        """Calculate overall budget summary."""
        total_budget = sum(i.current_budget for i in self.items.values())
        total_committed = sum(i.committed_cost for i in self.items.values())
        total_actual = sum(i.actual_cost for i in self.items.values())
        total_forecast = sum(i.forecast_cost for i in self.items.values())

        variance = total_budget - total_forecast
        variance_pct = (variance / total_budget * 100) if total_budget > 0 else 0

        # By category
        by_category = {}
        for item in self.items.values():
            cat = item.category.value
            if cat not in by_category:
                by_category[cat] = {
                    'budget': 0, 'actual': 0, 'forecast': 0, 'variance': 0
                }
            by_category[cat]['budget'] += item.current_budget
            by_category[cat]['actual'] += item.actual_cost
            by_category[cat]['forecast'] += item.forecast_cost
            by_category[cat]['variance'] += item.variance_amount

        # Items needing attention
        critical = [i for i in self.items.values() if i.status == VarianceStatus.CRITICAL]
        over_budget = [i for i in self.items.values() if i.status == VarianceStatus.OVER_BUDGET]

        return {
            'project': self.project_name,
            'currency': self.currency,
            'original_budget': self.original_budget,
            'current_budget': total_budget,
            'committed': total_committed,
            'actual': total_actual,
            'forecast': total_forecast,
            'variance': variance,
            'variance_percent': round(variance_pct, 1),
            'status': 'ON_TRACK' if variance >= 0 else 'OVER_BUDGET',
            'by_category': by_category,
            'critical_items': len(critical),
            'over_budget_items': len(over_budget),
            'contingency_used': total_budget - self.original_budget
        }

    def get_critical_items(self) -> List[BudgetItem]:
        """Get items with critical variances."""
        return [i for i in self.items.values()
                if i.status in [VarianceStatus.CRITICAL, VarianceStatus.OVER_BUDGET]]

    def forecast_completion(self,
                           optimistic_factor: float = 0.95,
                           pessimistic_factor: float = 1.15) -> Dict[str, ForecastScenario]:
        """Generate forecast scenarios."""
        current_forecast = sum(i.forecast_cost for i in self.items.values())
        current_budget = sum(i.current_budget for i in self.items.values())

        scenarios = {
            'optimistic': ForecastScenario(
                name="Optimistic",
                description="Best case with no further overruns",
                adjustments={},
                total_forecast=current_forecast * optimistic_factor,
                variance_from_budget=current_budget - (current_forecast * optimistic_factor)
            ),
            'most_likely': ForecastScenario(
                name="Most Likely",
                description="Current trend continues",
                adjustments={},
                total_forecast=current_forecast,
                variance_from_budget=current_budget - current_forecast
            ),
            'pessimistic': ForecastScenario(
                name="Pessimistic",
                description="Additional overruns expected",
                adjustments={},
                total_forecast=current_forecast * pessimistic_factor,
                variance_from_budget=current_budget - (current_forecast * pessimistic_factor)
            )
        }

        return scenarios

    def analyze_trends(self) -> Dict[str, Any]:
        """Analyze cost trends from history."""
        if len(self.history) < 2:
            return {'trend': 'insufficient_data'}

        forecasts = [h['total_forecast'] for h in self.history]
        actuals = [h['total_actual'] for h in self.history]

        # Calculate trend direction
        forecast_trend = forecasts[-1] - forecasts[0]
        actual_trend = actuals[-1] - actuals[0]

        return {
            'forecast_trend': 'increasing' if forecast_trend > 0 else 'decreasing',
            'forecast_change': forecast_trend,
            'actual_trend': 'increasing' if actual_trend > 0 else 'stable',
            'actual_change': actual_trend,
            'data_points': len(self.history)
        }

    def export_variance_report(self, output_path: str):
        """Export detailed variance report to Excel."""
        with pd.ExcelWriter(output_path, engine='openpyxl') as writer:
            # Summary
            summary = self.calculate_summary()
            summary_df = pd.DataFrame([
                {'Metric': k, 'Value': v}
                for k, v in summary.items()
                if not isinstance(v, dict)
            ])
            summary_df.to_excel(writer, sheet_name='Summary', index=False)

            # Line items
            items_data = []
            for item in self.items.values():
                items_data.append({
                    'Code': item.item_code,
                    'Description': item.description,
                    'Category': item.category.value,
                    'Budget': item.current_budget,
                    'Committed': item.committed_cost,
                    'Actual': item.actual_cost,
                    'Forecast': item.forecast_cost,
                    'Variance $': item.variance_amount,
                    'Variance %': round(item.variance_percent, 1),
                    'Status': item.status.value,
                    '% Complete': item.percent_complete
                })

            pd.DataFrame(items_data).to_excel(writer, sheet_name='Line Items', index=False)

            # Variance records
            if self.variance_records:
                records_df = pd.DataFrame([{
                    'ID': r.record_id,
                    'Item': r.item_code,
                    'Amount': r.variance_amount,
                    'Cause': r.cause.value,
                    'Explanation': r.explanation,
                    'Date': r.recorded_date,
                    'By': r.recorded_by
                } for r in self.variance_records])
                records_df.to_excel(writer, sheet_name='Variance Records', index=False)

        return output_path
```

## Quick Start

```python
# Initialize analyzer
analyzer = BudgetVarianceAnalyzer(
    project_name="Office Tower",
    original_budget=50000000,
    currency="USD"
)

# Add budget items
analyzer.add_budget_item("01-SITE", "Site Work", CostCategory.SUBCONTRACTOR, 2000000)
analyzer.add_budget_item("03-CONC", "Concrete", CostCategory.SUBCONTRACTOR, 8000000)
analyzer.add_budget_item("05-STEEL", "Structural Steel", CostCategory.SUBCONTRACTOR, 6000000)

# Update with actuals
analyzer.update_costs("03-CONC", committed=8500000, actual=4000000, percent_complete=45)

# Get summary
summary = analyzer.calculate_summary()
print(f"Variance: ${summary['variance']:,.0f} ({summary['variance_percent']}%)")
```

## Common Use Cases

### 1. Monthly Cost Review
```python
summary = analyzer.calculate_summary()
critical = analyzer.get_critical_items()
print(f"Items needing attention: {len(critical)}")
```

### 2. Record Variance Cause
```python
analyzer.record_variance(
    item_code="03-CONC",
    cause=VarianceCause.PRICE_ESCALATION,
    explanation="Steel rebar prices increased 15%",
    recorded_by="Cost Manager"
)
```

### 3. Forecast Scenarios
```python
scenarios = analyzer.forecast_completion()
for name, scenario in scenarios.items():
    print(f"{scenario.name}: ${scenario.total_forecast:,.0f}")
```

## Resources
- **DDC Book**: Chapter 3.1 - Cost Management
- **Reference**: PMI Cost Management

How this skill works

  • Processes planned_budget and actual_spending JSON objects
  • Matches categories between planned_budget and actual_spending
  • Computes variance as actual minus planned for each category
  • Computes percentage as (variance / planned) * 100
  • Determines status as 'over' for positive variance or 'under' for negative
  • Assumes 0 for missing categories in planned_budget or actual_spending
  • Generates variances array with category, planned, actual, variance, percentage, status
  • Generates summary text describing key variances

When to use it

  • When comparing actual construction costs against budgeted amounts to identify variances
  • When generating reports on budget overruns or underruns for construction projects
  • When processing budget data and expenditure logs to compute percentage variances

Best practices

  • Configure budget_csv_url and actuals_csv_url with publicly accessible CSV files
  • Format CSV files with exact columns: department, category, budgeted_amount, period for budget; department, category, actual_amount, period for actuals
  • Ensure department, category, and period values match exactly between budget and actuals CSVs
  • Limit CSV file sizes to under 1MB to prevent timeouts
  • Validate CSV columns and data alignment before invoking the skill

Example use cases

  • Project Budget Variance Calculation: Computes the difference between planned and actual budgets for a construction project using provided planned_budget and actual_spend inputs.
  • Category-Level Variance Analysis: Analyzes variances for specific budget categories such as materials, labor, equipment, and overhead based on categorized actual and planned data.
  • Budget Status Categorization: Categorizes overall project status as under budget, on budget, or over budget using variance_threshold parameter.
  • Variance Report Generation: Generates a summary report including total variance, percentage variance, status, and category breakdowns for project review.

FAQs

What is the name of the skill?

budget-variance-analyzer

What category does the skill belong to?

datadrivenconstruction

What is the primary function of the Budget Variance Analyzer skill?

It analyzes budget variances by comparing planned budgets against actual expenditures for construction projects, identifying over/under-spends, and generating actionable insights.

What input files are required by the skill?

Planned budget data (CSV format with columns: Category, PlannedAmount, Period) and actual expenditure data (CSV format with columns: Category, ActualAmount, Period).

What outputs does the skill produce?

A variance report in JSON format including variances per category, percentage variances, total variance, and recommendations; optionally, a visualized PDF report.

What tools or libraries does the skill use?

Pandas for data processing, Matplotlib/Seaborn for visualizations, and ReportLab for PDF generation.

What is the expected format of the input CSV files?

CSV files with headers: Category (string), PlannedAmount/ActualAmount (float), Period (string in YYYY-MM format).

Does the skill handle multiple periods?

Yes, it aggregates variances across multiple periods specified in the input data.

What variance threshold triggers a 'high risk' flag?

Variances exceeding 10% are flagged as 'high risk' with recommendations.

More similar skills to explore

  • achurch

    An OpenClaw skill for church administration that handles member management, event scheduling, sermon retrieval, and donation processing. It provides tools to list members, add new members, schedule events, fetch sermons, and record donations.

  • agent-config

    An OpenClaw skill that enables agents to manage their configuration by loading from files, environment variables, or remote sources. It supports retrieving, setting, and validating configuration values. The skill allows for hot-reloading of configurations.

  • agent-council

    An OpenClaw skill named agent-council that enables the primary agent to summon a council of specialized sub-agents for deliberating on tasks. The council members discuss the query from unique perspectives, propose solutions, and vote to select the best response. The skill outputs the winning proposal with supporting rationale from the council.

  • agent-identity-kit

    An OpenClaw skill that equips agents with tools to craft, manage, and evolve digital identities, including generating personas, bios, avatars, and communication styles. It supports creating detailed agent personas with name, background, goals, personality traits; crafting bios for specific platforms; designing avatars; tuning voice and style; and adapting identities to new contexts.

  • agenticflow-skill

    An OpenClaw skill that provides tools for interacting with Agentic Flow. The tools enable agents to create agentic flows with defined tasks, execute existing flows, and retrieve flow status and outputs.

  • agentlens

    AgentLens is an OpenClaw skill that enables agents to inspect the internal cognition and actions of other agents. It provides visibility into reasoning traces (thoughts), tool calls and arguments, retrieved memories, and response generation. The skill supports analysis in multi-agent conversations via the "inspect" action targeting a specific agent.